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Abstract
Peculiarities of the non-local responses of spatially inhomogeneous insulating
media to electromagnetic waves are considered within a phenomenological
approach. In the case of a weak spatial dispersion (SD), a ‘quasi-local’
constitutive equation is derived, which allows one to isolate the effects of SD
in relation to non-uniformities of the wavefield and the material properties
of the medium. The symmetry of the material tensors is clarified. The
material contribution to the SD suggests a novel mechanism for optical activity.
The SD in crystalline media is described in terms of dielectric permittivity
dependent upon a single argument which is a specific combination of the light
wavevector and the reciprocal lattice vectors. The conditions and materials for
which the relevant effects can be notable are pointed out. The character of
the normal light wave polarization in dielectric crystals of the A2BX4 group
with incommensurately modulated superstructure is analysed and the effective
crystal optical parameters are derived. It is shown that the first-order material
SD effects associated with the bulk macroscopic properties of these crystals
could be of practical importance.

1. Introduction

Spatial dispersion (SD) in the propagation of electromagnetic waves in solids, liquids, plasmas
etc is an analogue of ordinary (time or frequency) dispersion [1] on the spatial scale. The
insulating medium is said to be spatially dispersive if its optical response is non-local, i.e. the
electric displacement D(r) of an electromagnetic wave at a given point r depends upon the
electric field E(r) at this point and the field values E(r′) in some vicinity of the point [2].
Then the non-local functional relation between D and E (or the so-called constitutive relation,
abbreviated hereafter as CR) written in the spatial domain for a linear anisotropic continuous
medium in the frequency region far from resonances takes the form [2]

Di (r) =
∫

εi j (r, r′)E j(r′) dr′ (1)

where the integration is in fact performed over the volume of the medium and the summation
convention over repeated Cartesian indices is used. The kernel εi j(r, r′) of the integral operator
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in the rhs of equation (1) represents the response function of the medium and the quantities E
and D entering there are not necessarily macroscopically averaged. Fourier transforming (1)
for spatially homogeneous media yields an optical dielectric tensor εi j dependent on the light
wavevector k (Di (k) = εi j(k)E j (k)—see, e.g., [2, 3]), which is usually believed to represent
the most general (and quite equivalent to equation (1)) formulation of SD for any media.

It is well known that the SD modifies notably optical properties of the medium, producing,
in particular, an optical activity (or gyration) effect. According to traditionally accepted
formulations [4, 5], the optical activity originates from the first-order SD corrections to a
common ‘local’ optics and is understood as a result of finiteness of the electromagnetic
wavelength λ with respect to the molecule dimensions or the crystal lattice parameters a.
The effect has therefore a typical order of magnitude a/λ and arises under circumstances when
the electric field non-uniformity on the a scale cannot be neglected.

Since the inhomogeneity of material media on the microscopic (atomic) scales does not in
fact contribute to the optical response (see the analysis by Agranovich and Ginzburg [2]), while
the scales of spatial variations of the macroscopic properties of the media are typically much
larger than the light wavelength, the consideration of SD has been so far restricted mainly to
homogeneous media. Unfortunately, this approximate approach leaves out of consideration
the optical phenomena that can, in principle, occur in the media which seem to be certainly
inhomogeneous (solid state systems possessing superstructures of different physical nature,
non-uniform waveguides and plasmas, liquid crystals etc). Therefore, serious questions remain
in the theory of SD in matters related to its manifestations in spatially inhomogeneous materials.
In our view, the expected weakness of the above mentioned phenomena cannot be regarded as
absolutely definite.

In this respect, the analysis of light propagation in bounded media, the limiting case of
inhomogeneous ones (see the results [6–8] and, especially, [9–11]), is very interesting. It
requires taking into account spatial variations of the dielectric parameters in the surface layer,
in order to obtain correct energetic relationships within the phenomenological electrodynamics
of gyrotropic media. In our opinion, however, the approach used in [9–11] is not
sufficiently general, while the corresponding results require a proper physical interpretation.
Additional interest in the SD in inhomogeneous media was stimulated by the works
[12–15], in which the formulation of the crystal optics of the insulating materials possessing
IC superstructure is fundamentally based on the assumption of their non-uniformity on semi-
macroscopic scales.

The aim of our study is to analyse the SD in inhomogeneous media and its consequences
for the observable, macroscopic crystal optical properties. We present simple physical
considerations concerning the peculiarities of SD in macroscopically inhomogeneous media,
particularly crystalline ones. We wish to show that a new kind of SD phenomenon, described
by the same equation (1), can be distinguished for these media, which produces optical activity
with a different origin. The outline of the present paper is as follows. In section 2 we begin with
some important results of the phenomenological theory of SD in homogeneous continuous
insulating media. The consideration in section 3 is generalized towards inhomogeneous
media and the mechanisms for the optical gyration in those media are clarified. Section 4
is devoted to the description of the SD in crystalline media, in particular crystals possessing
the incommensurate (IC) superstructure. Section 5 deals with the quantitative analysis of the
influence of non-locality of the optical response and the mesoscopic structural inhomogeneity
of the IC crystals on the character of the electromagnetic wave polarization in those crystals.
The crystal optical characteristics of centrosymmetric IC phases are obtained there and the
possibility for experimental observation of first-order SD effects is discussed. Finally, the
conclusions are drawn in section 6.
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2. Spatial dispersion in homogeneous continuous media

We start with discussing the most important points related to SD in homogeneous media,
which will be later used in the description of more complicated cases. This brief discussion
is also justified by the inconsistencies that occur sometimes in the presentation of the subject.
First of all, the medium has to be regarded as infinite; for any boundary, at which material
parameters change abruptly, represents a partial case of inhomogeneity. The properties of
a homogeneous, infinitely extended continuous medium should be invariant with respect to
translations, including infinitesimal ones, and so we have in (1)

Di (r) =
∫

εi j (r − r′)E j (r′) dr′. (2)

Note that a further assumption of a dependence of the kernel εi j on the modulus |r − r′| would
have meant the presence of an inversion centre in the medium (equivalence of all directions
to the opposite ones) and the absence of gyrotropy1. On the other hand, this is also evident
because a response function even in r − r′ would forbid the property (see below).

Despite the formally infinite integration limits in (2), it is understood from the simplest
physical reasoning that the optical processes at notably distant points cannot be concerned with
each other. Therefore, the kernel εi j(r − r′) remains non-zero only for argument values not
too much larger than a characteristic ‘non-locality radius’ as, which determines the importance
of the non-locality phenomena. In practice, as is equated to a free path length of particles or
the Debye radius in plasmas [3] and to molecule or ionic group dimensions, or the interatomic
distances (the lattice parameters) a in a condensed matter [2]. If non-localized collective
excitations are present in crystals, as can sometimes exceed typical dimensions of the unit
cell [16].

When we are allowed, under some circumstances, to consider as as being infinitely small,
we can put εi j(r − r′) = δ(r − r′)εNSD

i j in (2), where δ(r) is the Dirac delta function, and the
local optics limit is recovered:

Di (r) = εNSD
i j E j(r) (3)

which describes spatially non-dispersive medium. The situation could be compared with the
case of a spatially dispersive medium responding to a uniform field (E(r′) = E(r) = E). Then
on the basis of formula (2) we obtain

Di = εSD
i j E j (4)

where εSD
i j = ∫

εi j(r − r′) dr′. The cases of equation (3) for a constant field and (4) differ only
in the definitions of the material parameters. Thus, both non-locality of the response (as �= 0)
and non-uniformity of the external field are necessary for the SD to manifest itself in the
homogeneous medium. The above mentioned non-uniformity is described by characteristic
scales of essential changes in the field, in particular by the wavelength λ for electromagnetic
waves. Thus the importance of SD is determined by the ratio as/λ.

If as/λ � 1, the field E(r′) may be expanded in a series in the vicinity of the point
r. Confining ourselves to several lowest-order expansion terms, we have a ‘quasi-local’ CR,
instead of (2):

Di (r) = εi j E j (r) + γ
(1)
i jl ∇l E j(r) + γ

(2)
i jlm∇l∇m E j(r) + · · · (5)

1 The response function of an isotropic, non-gyrotropic medium obtained within a specific model in section 10 in [2]
depends only on |r − r′ |.
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where

εi j =
∫

εi j(r − r′) dr′,

γ
(1)
i jl =

∫
εi j (r − r′)(r′ − r)l dr′,

γ
(2)

i jlm =
∫

εi j (r − r′)(r′ − r)l(r′ − r)m dr′;

(6)

εi j is the dielectric permittivity tensor which does not account for the SD, while γ
(1)
i jl and γ

(2)
i jlm

describe the SD effects of the first (gyrotropy) and the second orders, respectively.
Let us analyse some symmetry properties of the response functions εi j(r, r′) and εi j(r−r′)

and the material tensors in formula (5). The fundamental Onsager symmetry principle for
the kinetic coefficients [5] applied to the dielectric permittivity of spatially dispersive media
requires that the condition∫

E(1)(r)D(2)(r) dr =
∫

E(2)(r)D(1)(r) dr (7)

be satisfied for arbitrary electric fields E(1) and E(2) and the corresponding displacements D(1),
D(2). With (1) and (2), this leads to

εi j (r, r′) = ε j i(r′, r), εi j(r − r′) = ε j i(r′ − r). (8)

One can note that formula (7) reduces to the condition of self-conjugate (Hermitian) character
of the ‘overall’ dielectric permittivity ε̂, which gives the electric displacement according
to D = ε̂E, if the scalar product of vectors is only defined through the ‘natural’ relation
(E(1), E(2)) ≡ ∫

E(1)(r)E(2)(r) dr in a real linear vector space. In order for the integral operator
ε̂, which acts according to (1) or (2), not to take the vectors out of the linear space, its kernel
εi j (r, r′) (or εi j(r − r′)) should be real:

εi j (r, r′) = [εi j(r, r′)]∗, εi j(r − r′) = [εi j(r − r′)]∗. (9)

In other words, the Onsager principle would result in Hermitian dielectric permittivity,provided
that the condition (9) is fulfilled. In particular, the symmetry of the kernel of the ‘scalar’
Fredholm operator ε̂E(r) = ∫

ε(r, r′)E(r′) dr′ with respect to interchanging coordinates
(ε(r, r′) = ε(r′, r)) makes the operator Hermitian whenever the kernel is real.

On the other hand, the condition of absence of energy losses
∫

E(r)[D(r)]∗ dr =∫
[E(r)]∗D(r) dr [5] for the electric component of a harmonic wave ∼exp iωt , which is fulfilled

for transparent media, just reduces to (9). This ensures that the dielectric permittivity of the
lossless medium is Hermitian.

On the basis of the Onsager symmetry for the real kernel εi j (r−r′) and the definitions (6),
the known properties of the material tensors in (5) hold true for the homogeneous media:

εi j = ε j i γ
(1)
i jl = −γ

(1)
j il γ

(2)
i jlm = γ

(2)
j ilm, (10a)

εi j = ε∗
i j γ

(1)
i jl = [γ (1)

i jl ]∗ γ
(2)
i jlm = [γ (2)

i jlm]∗. (10b)

In deriving formulae (10), we have taken into account that εi j(r − r′) contains components
both even and odd in r − r′. They determine the tensors εi j , γ

(2)
i jlm and the gyration tensor γ

(1)
i jl ,

respectively. As a result, the absence of the odd component in εi j(r − r′) and the absence of
the gyration effect are in fact equivalent. Besides this, the trivial property γ

(2)
i jlm = γ

(2)
i jml holds

for the γ
(2)
i jlm tensor.
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3. Spatial dispersion in inhomogeneous media

3.1. ‘Quasi-local’ constitutive relation

In the case of inhomogeneity, including that inevitably present in every material medium on
the microscopic level, the dielectric response should additionally depend on the coordinates r
and r′ separately, besides the dependence on the r − r′ argument mentioned above [2, 3, 6].
It has usually been supposed that the response function takes the form εi j(r − r′, r) [17] or
εi j (r−r′, r′) (see the consideration of SD in crystals [2], chapter 2, section 13). In this work we
assume the additional dependence to be ‘symmetric’ in r and r′. In other words, the kernel εi j

should depend on r′ (at a fixed r) in the same way as on r (at a fixed r′), with the corresponding
interchange of the integration variable in (1). Further consideration shows that this assumption
has a close relation to the Onsager symmetry (formulae (7) and (8)). Note also that Johnson
and Rimbey [8] worked in terms of the additional argument z + z′ in the case of a semi-infinite
medium with a plane boundary perpendicular to the z axis, in agreement with our assumption.
Of course, the dependence of the kernel on r − r′ has all the features discussed above.

Hence, we will represent the integral kernel of CR (1) for inhomogeneous media in the
form

εi j (r, r′) = εi j(r1, r2) (11)

where for the sake of concreteness the arguments r1 and r2 are defined as

r1 = r − r′, r2 = 1
2 (r + r′). (12)

Here the variables r1 and r2 can be regarded as independent, inasmuch as the functional
dependences of the kernel on r1 and r2 represent different physical effects. That is, the former
reflects non-locality of the response, while the latter describes the inhomogeneity of the optical
properties, e.g., a spatial variation of the non-locality radius. One can further prove that other
choices of constants α and β in the more general definitions r1 = α(r − r′) and r2 = β(r + r′)
(with finite non-zero constants α and β) would not cause violation of the main conclusions of
this work (see appendix A).

Let us introduce a characteristic dimension λm where the properties of the medium change
appreciably (say, a spatial period in the case of periodic media). If the λm parameter is not
infinitely large as compared to the λ value, the SD can no longer be attributed to non-uniformity
of the electromagnetic wave alone. Consistent consideration requires taking into account
spatial variations of the material parameters of the medium itself. In other words, whenever
the non-locality scales as, on which the response to the wave is formed, are not negligibly small
with respect to λ and λm, then both the wavefield and the properties of the medium are to be
considered as variable on those scales. It is seen from (1), (11) and (12) that the displacement
D(r) is determined not only by the field E(r) and the local material parameters εi j (r1, r) at
the point r (i.e., the values εi j (r1, r2) taken at r′ = r in the argument r2), but also the fields
E(r′) and the parameters εi j(r1, r2) in some vicinity of that point.

Let us now proceed to a quantitative description of these phenomena. When the ratios
as/λ and as/λm are negligible, we have εi j(r1, r2) = δ(r1)ε

NSD
i j (r2) from (11) and (12) and so

pass to the local CR (cf equation (3)),

Di (r) = εNSD
i j (r)E j(r). (13)

When the SD is weak (as/λ, as/λm � 1), the response function (11) and the field in (1) may
to a sufficient degree of accuracy be represented by several lowest-order terms of their Taylor
series. After transformations (see appendix A), the corresponding expansion is as follows:

Di (r) = εi j(r)E j(r) + γ
(1)
i jl (r)∇l E j(r) + 1

2 [∇lγ
(1)
i jl (r)]E j(r) + γ

(2)
i jlm(r)∇l∇m E j (r)

+ [∇lγ
(2)
i jlm(r)]∇m E j(r) + 1

4 [∇l∇mγ
(2)
i jlm(r)]E j(r) + · · · (14)
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where the ∇s affect the nearest square brackets only and the material tensors of the
inhomogeneous medium are defined according to2

εi j(r) = 2
∫

εi j(r − r′, r) dr′,

γ
(1)
i jl (r) = 4

∫
εi j (r − r′, r)(r′ − r)l dr′,

γ
(2)

i jlm(r) = 4
∫

εi j (r − r′, r)(r′ − r)l(r′ − r)m dr′.

(15)

It is seen from (14) that the SD phenomena in a dielectric medium characterized by a non-
local response are related to inhomogeneities of both the electric field of the electromagnetic
wave and the optical parameters of the medium. In the following, we shall conventionally
refer to these phenomena as the SD attributed to the wavefield (or simply field SD) and the SD
attributed to the material (or material SD), respectively. The second-order and higher-order
SD effects contain additionally terms of a ‘mixed’ type ([∇lγ

(2)
i jlm]∇m E j etc). The field and

the material SDs are hardly separable in general (see equation (1)), though the only exception
concerns a practical case of a weak first-order SD. It is worth noticing that the material SD
effect should manifest itself in inhomogeneous media even if the latter are responding to a
spatially uniform external field. This would essentially modify the electric displacement when
compared to the case of a non-dispersive medium (cf the situation described by equation (4)).

3.2. Symmetry of the material tensors

In order to analyse the symmetry of spatially dependent tensors in (14), it would be more
convenient to employ the initial formulation of the Onsager principle in the form of a ‘cross-
energy’ relationship (7). Using (7) and (14), we obtain

E (1)
i E (2)

j [(εi j − ε j i) + 1
2 (γ

(1)
i jl + γ

(1)
j il ) + 1

4 (γ
(2)
i jlm − γ

(2)
j ilm)]

+ E (1)
i [(γ (1)

i jl + γ
(1)
j il ) + ∇m(γ

(2)
i jlm − γ

(2)
j ilm)]∇l E (2)

j

+ E (1)

i [γ (2)

i jlm − γ
(2)

j ilm]∇l∇m E (2)

j = 0, (16)

where the trivial property γ
(2)

i jlm = γ
(2)

i jml (see formula (15)) is taken into account. Since
the functions E(1) and E(2) entering (16) are arbitrary, formulae (10a) are also valid for the
inhomogeneous medium; i.e., the tensors εi j and γ

(2)
i jlm are symmetric and γ

(1)
i jl antisymmetric

under interchange of the indices i and j . If the terms related to the material SD were absent
in the ‘quasi-local’ CR, it would not agree with the Onsager principle. Thus we must have
arrived at a requirement of the type of (16), from which there follows a need for either putting
γ

(1)
i j l = γ

(2)
i jlm = · · · = constant or redefining the material tensors in a complicated way, which

might be implicitly reduced to formula (14).
A similar situation would arise if the numerical coefficients of the material SD

contributions in (14) were altered. According to the general regularity that follows from
formula (A.7) of appendix A, the coefficients of ‘purely material’ contributions to the pth-order
SD are 2p times less than those of the ‘purely field’ contributions. This is a direct consequence
of our assumption concerning the r−r′ symmetry in the additional coordinate dependence of

2 The limiting transition to the case of a homogeneous medium with the tensor definitions (formulae (6)) needs some
caution. So, εi j (r) is determined not only by the first term in the expansion of the kernel εi j (r1, r2) (i.e., εi j (r1, r))
but also all the following terms (see formula (A.1)). For instance, the second term (1/2)∇l [εi j (r1, r)](r′ − r)l =
(1/2)∇l [εi j (r1, r)(r′ − r)l ] + (1/2)εi j (r1, r) gives the additional contribution (1/2)εi j (r1, r). Since all the spatial
derivatives of εi j (r1, r) are zero for the homogeneous medium, the above mentioned contributions are absent and the
coefficient ‘2’ in the definition (15) of εi j (r) transforms to unity in the definition (6) of εi j .
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the kernel of the integral CR for inhomogeneous media. Thus, the latter assumption may be
regarded as equivalent to the requirement of Onsager symmetry of the optical response. The
partial case of the above mentioned regularity (the presence of the coefficient 1/2 for the term
(∇lγ

(1)

i j l )E j entering the CR for the bounded gyrotropic media) has long been disputed in the
literature and was proved by Agranovich and Yudson [9] (see also [2, 10, 11]). Strictly speaking,
the motivation of the authors of [9, 10] for introducing the first-order spatial derivatives of the
gyration tensor into the quasi-local CR just consisted in the desire to formally adjust the CR to
the requirements of the Onsager principle and the balance conditions for the electromagnetic
energy flow through the boundary of the medium. Unfortunately, this was accompanied with
neither discussion of the phenomena associated with the material SD nor a relevant analysis
of its physical consequences.

Using the condition for transparency of the medium (see section 2), together with (10a),
leads again to formulae (10b). Thus, all the tensors in (14) should be real and,with formula (15),
the same applies to the εi j(r − r′, r) function. In other words, the symmetry of the material
tensors describing the optical properties of inhomogeneous media remains unchanged as
compared with the case of homogeneous media. In particular, when the absorption is absent,
the ‘overall’ dielectric permittivity tensor ε̂ defined formally via the relation D = ε̂E is
Hermitian, thus objecting to a groundless statement in the recent work [15]. It is worthwhile
noting that, under the conditions of spatial dependenceof the material parameters, the inversion
symmetry of the medium does not necessarily lead to disappearance of the odd-rank tensors
in (14). So, we have γ

(1)
i jl (r) = −γ

(1)
i jl (−r) for the gyration tensor under the action of the

inversion centre, in clear contrast to the condition γ
(1)
i jl = −γ

(1)
i jl that forbids gyrotropy for

homogeneous medium. This general conclusion agrees well with the result of Meekes and
Janner [12] for the IC crystals obtained more rigorously within the superspace symmetry
approach.

Finally, we note that an attempt to relate the non-local response function and the tensors
εi j(r) and γ

(1)

i jl (r) in the CR [9] for the transition layer at the gyrotropic medium surface has
been made in [11]. Using the notation adopted in this work, the author of [11] has defined
the material tensors as εi j(r) = ∫

εi j(r, r′) dr′ and γ
(1)
i jl (r) = ∫

εi j(r, r′)(r′ − r)l dr′. On the

basis of (11), (A.1) and the results of appendix A, one can conclude that εi j(r) and γ
(1)
i jl (r)

include contributions from the higher-order SD and so are asymmetric in the indices i and
j . Therefore, the definitions turn out to be both inconvenient and inconsistent, and the same
applies to the final CR for the gyrotropic medium (see formula (12) in [11]).

3.3. The effects related to the material spatial dispersion

Let us discuss the possible physical consequences of the material SD. First of all, we recall that
the common understanding of the SD in non-magnetic media as phenomena associated with a
dependence of the electric polarization (or displacement) at a given point on the electric field
values in the vicinity of that point (see, e.g., [2, 3, 5]) should be admitted to be a restricted one.
It is interesting that the results [9–11, 18, 19] (see also [2], section 3) have still not hampered
such reductive interpretations, since they have only been linked with the transition layer at
the surface of a gyrotropic medium. According to our results, the notion of SD should be
generalized to one embracing the optical phenomena which appear due to non-locality of the
response and manifest themselves under conditions of sufficiently inhomogeneous wavefield
and/or material properties of the medium.

As mentioned in section 1, SD could be compared with the ordinary (time or frequency)
dispersion, which has a decisive effect in optics and is caused by inertiality of the electric
polarization of the medium (see [1]). It is well known that the displacement at a given time t is
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determined in a non-local fashion by both the field at that particular instant of time and the fields
at the preceding times t ′ < t , provided that the relaxation time τs for the medium polarization
process is not negligibly small when compared with the field period T . More strictly, we
have Di (t) = ∫ t

−∞ εi j (t, t ′)E j(t ′) dt ′. In the case of a stationary medium (a constant τs value,
εi j (t, t ′) = εi j (t − t ′)), this leads to the material relation Di (ω) = εi j(ω)E j (ω) in terms of
the Fourier components, and a dependence of the material parameters on the frequency ω of
the electromagnetic wave. In this context, the material SD has an evident analogue in the
time dispersion phenomena occurring in weakly non-stationary media, under the condition
of finiteness of characteristic times Tm required for notable variations of the properties of the
medium (τs/Tm �= 0), e.g., due to non-linear optical effects appearing under the action of the
other intense electromagnetic wave. However, further elaboration of the analogy could hardly
be efficient, for the non-stationary media themselves have so far been given little consideration
(see [5], section 61).

One can grasp some consequences of the material SD even without a detailed quantitative
analysis. First, we need to come to terms with the definitions. A comparison with the simplest
case of macroscopically homogeneous, transparent crystals manifesting first-order SD would
be useful in this regard. In fact, two different definitions of optical gyration may be utilized
for the latter objects (see [2, 4, 5, 20, 21]). One can reasonably postulate that the crystal
is optically active if the corresponding CR includes a non-zero tensor γ

(1)

i jl . Instead of this
definition, dealing with the material parameters of the crystal, one can, quite equivalently,
define the gyration ‘physically’, making use of the fact that the waves propagating in that
crystal are elliptically (in particular cases, circularly) polarized [20].

Let us assume that the plane electromagnetic wave with the wavevector k = ezk (ei = 1,
i = x, y, z being the principal axes of the optical indicatrix ellipsoid) and the electric
field E = ex Ex exp i(ωt + kz) in the complex representation is excited in such a crystal,
which possesses, e.g., an orthorhombic symmetry. Since the overall dielectric permittivity is
ε̂i j = εi j + iγ (1)

i jl kl (with εi j = 0 at i �= j—see formula (5)), the displacement field would be

polarized elliptically (D = [exε11 − ieyγ
(1)
123k]Ex exp i(ωt + kz)). Here the phase retardation

π/2 between the components Dx and Dy and so also the elliptical character of the polarization
are due to antisymmetry of the γ

(1)

i jl tensor and imaginary second term (γ (1)

i j3 ∇z = iγ (1)

i j3 k) in the
ε̂i j tensor. The crystal is, of course, optically active.

Now let the said wave be excited in the inhomogeneous (for the sake of definiteness,
periodic along the z axis) medium, characterized by the period λm = 2π/q and the
tensor ε̂i j(r) = εi j + γ

(1)

i jl (r)∇l + (1/2)[∇lγ
(1)

i jl (r)]. It is well known [21] that the typical
solutions for the electromagnetic waves may be represented as non-uniform Bloch-type waves
D = [exε11 Ex +ey(A+

y exp iqz+ A−
y exp(−iqz))] exp i(ωt+kz), where A±

y are the real amplitude
coefficients determined by Ex and the off-diagonal components of ε̂i j(r). The waves turn out
to be elliptically polarized in general, the maximum ellipticity being achieved at the points
where qz = ±π/2. Starting from the above, it is expedient to qualify the medium as optically
active, although it could not be completely fitted into the common definitions of gyration
for homogeneous media from the viewpoints of the ‘quasi-local’ CR and the normal wave
polarization (see also the discussion in [22]).

Hence, the first-order material SD leads to an apparent gyration, which can be, in principle,
detected experimentally (cf the long-accepted formulations of gyration given by workers in the
field [2, 4, 5, 20, 21]). The effect should be evaluated via the ratio as/λm, not as/λ. As far as
we know, the relevant physical mechanism for the gyration associated with the finiteness of the
characteristic dimensions of inhomogeneity of the material—in particular, the superstructure
periods or any other periods imposed by non-uniform external influences—has never been
mentioned in the literature.
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As far as the microscopic wavefields and the material properties are concerned,
formula (14) is the only relation consistent with the general symmetry requirements. On passing
to the macroscopic description, one can be faced with the following seeming contradiction.
The significance of the gradient terms should have increased with decreasing spatial period λm.
In total, however, the components of the overall dielectric tensor ε̂i j are known [2] to decrease
exponentially with decreasing λm. Therefore, a macroscopic averaging performed for the case
of crystalline media [2] would result in removal of all the short-wavelength components of the
field and the material tensors, except for those corresponding to periods notably larger than
the crystal lattice constants. Then a (purely practical and in no case fundamental) question
arises: to what extent can the new gradient terms in (14) affect the bulk macroscopic optical
properties of the medium? This is reduced to the possibility of application of a simpler CR,

Di (r) ≈ εi j(r)E j(r) + γ
(1)
i jl (r)∇l E j(r) + γ

(2)
i jlm(r)∇l∇m E j(r) + · · · , (17)

in which the symmetry of the material tensors is the same as in the case of homogeneous media,
as a practical approximation in the phenomenological electrodynamics of macroscopically
inhomogeneous media. The analysis involving additionally the wave equation shows that
equation (17) can be used, instead of (14), when

λ∇lγ
(1)
i jl (r) � γ

(1)
i jl (r), (18)

and similarly for the γ
(2)
i jlm(r) tensor. Formula (18) is equivalent to the condition of slow

spatial variations of the material parameters (λm 
 λ), which is justified for a large variety
of solids and often for plasmas. Since it correlates well with the well-known slowly varying
amplitude envelope approximation and the basic assumptions of the commonly used Jones
operator calculus (see [21]), the reason for the relative success of the standard theory that
neglects the material SD is obvious.

Ignoring the effect acquires even more practical significance if one remembers that formula
(18) is close to the condition for applicability of the geometric optics approximation [3, 4, 21],
which is best expressed in terms of the refractive indices n:

λ∇l n(r) � n(r) (19)

where n(r) denotes the value averaged on the light wavelength scale. When the relation (19)
does not hold, we deal with an essentially inhomogeneous optical medium that strongly scatters
light. Although (18) and (19) are indeed similar, unnoticed exceptions are possible for the
anisotropic media, whose refractive indices are determined by a total combination of the tensor
componentsε(r) and γ(i)(r). That is, formula (19) would remain fulfilled, despite the violation
of (18), if ε(r) and γ(i)(r), which are rapidly varying in space, do not contribute dominantly to
the refractive indices. In other words, there might be situations when a violation of the slowly
varying amplitude approximation for the anisotropic medium does not simultaneously imply
large gradients ∇n(r), strong ‘optical inhomogeneity’ and the impossibility of employing the
geometric optics approximation. The material SD in such non-scattering media would mainly
modify a polarization state of the light waves but not their phase velocities. As shown in [23],
the latter situation just occurs in crystals with the IC superstructure (see also section 4.2).

Without pretending to have achieved completeness, let us finally point out the situations
in which the material SD in the non-scattering media may be of some practical importance.
The appropriate conditions are easy to achieve for inhomogeneous plasmas [3]. ‘Fast’, though
usually small in magnitude, spatial variations of the properties of condensed matter or plasmas
may arise under the influence of non-uniform external fields (e.g., applied using electrodes
created with the aid of modern nanotechnologies). Another example might be ‘parametric’ non-
linear optical effects, which consist in the ‘modulation’ of material parameters of a medium by
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an intense (in particular, standing) electromagnetic wave, especially if that wave has a smaller
length than the ‘probing’ wave. In this respect, liquid crystals which often manifest a very
strong SD seem also to be interesting objects. It is a generally adopted approach to them to take
account of a second-order SD, and so notable corrections for the material SD could be expected
under some conditions. Finally, the above corrections should have a principal character in the
crystalline media with long-wavelength modulated superstructure (see below).

4. Spatial dispersion in crystals with incommensurate superstructure

4.1. The microscopic constitutive relation in the Fourier domain

Now we concentrate upon the SD phenomena in crystalline materials, for which the model of
a continuous medium adopted above is fitted after appropriate macroscopic averaging and the
analysis of the influence of structural and superstructural periodicities [2]. Our consideration
will mainly address a rather general case of dielectric crystals with IC superstructure, whereas
some important results for the ordinary (non-modulated) crystals may be simultaneously
obtained as a limiting case corresponding to disappearance of the IC modulation wave and
the appropriate reconstruction of the set of lattice vectors. We refer the reader to the review by
Cummins [24] for some introductory information on the physics of the IC phase transitions and
the basic definitions. In order to make use of standard approaches adopted within the solid state
theory, one should restore the translational invariance of the IC crystal, which is lost along the
modulation direction during the phase transition. This may be achieved by passing formally to
a superspace (r, ϕ), where ϕ denotes the phase of the IC modulation wave (see [25]). For the
initial integral CR valid for a crystal inhomogeneous on the microscopic scale, the approach
would mean making the parameters in (1) functions of ϕ (see also [26]). With formula (11),
we have

Di (r, ϕ) =
∫

εi j (r1, r2, ϕ)E j(r′, ϕ) dr′. (20)

Our aim is to obtain the CR that describes observable, macroscopic optical properties of the
IC crystals.

On the basis of the invariance of the kernel εi j(r1, r2, ϕ) under the transformations
imposed by the translation subgroup of the superspace symmetry group, one can write (see
also appendix A)

εi j (r1, r2, ϕ) = εi j (r1, r2 + a, ϕ + qICa) (21)

where a represents the translation vectors for the underlying lattice of the high-temperature
parent phase and qIC the wavevector of the IC modulation. Notice that the modulation in the
largest A2BX4 family of the IC crystals is one dimensional and occurs along the (001) direction,
while qIC = γ a∗

3 and γ = r/s + δ, where a∗
i are the basic reciprocal lattice vectors of the

parent phase, small integer numbersr and s characterize the crystal structure of a commensurate
(lock-in) phase and δ � 1 is the incommensurability parameter [24]. In accord with (21), the
translational invariance does not relate to the r1 variable. The additional dependence of the
kernel upon r2 represents a periodic function that may be reduced to a Fourier series in the
generalized reciprocal lattice vectors h of the IC phase taking the IC modulation into account
(h = ni a∗

i + mqIC, with ni , m being integers—see [12]). More generally, a set of reciprocal
lattice vectors should be modified so as to involve any other superstructure or the periodicities
due to non-uniform external fields. As a result, we have to use the following representation
(cf [2], chapter 2):

εi j (r1, r2, ϕ) =
∑

h

f h
i j(r1)e−ihr2 eimϕ . (22)
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With (22), Fourier transforming formula (20) leads to the CR in the wavevector domain (see
appendix B):

Di (k, ϕ) =
∑

h

ε̂h
i j(k + 1

2 h, ϕ)E j (k + h, ϕ) (23)

where the Fourier components ε̂h
i j of the microscopic dielectric permittivity tensor are defined

as

ε̂h
i j(k + 1

2 h, ϕ) = eimϕ

∫
f h
i j (r1)e−i(k+ 1

2 h)r1 dr1. (24)

The superscript h in ε̂h
i j(k + 1

2 h, ϕ) determines the spatial periodicity of the given Fourier

component (the corresponding period is λh = 2π/h), whereas the dependence on the k + 1
2 h

argument indicates the availability of SD. The appearance of this argument originates from the
definition (B.4), where the vectors k and k′ enter in the same way. Therefore, the argument of
the microscopic components of the dielectric tensor proves to be a ‘symmetric’ combination of
the arguments k + h and k concerned, respectively, with the electric field and the displacement
in (23). This, in turn, comes from the assumption represented by formulae (11) and (12).

Since, as a rule, the SD is a weak effect and the components f h
i j (r1) tend rapidly to zero

with increasing r1, we may restrict ourselves in (24) to integrating over a volume of the order of
a3

s , irrespective of h. At the same time, the relation between the values of f h
i j (r1), ε̂h

i j(k+ 1
2 h, ϕ)

and h represents a separate problem.
The CR for the non-modulated crystals may be found from (23) under a strict condition

of the absence of IC superstructure (m = 0):

Di (k) =
∑

h0

ε̂
h0
i j (k + 1

2 h0)E j(k + h0) (25)

where h0 = ni a∗
i . Specifically the same calculations for the case of spatially non-dispersive

crystal (εi j(r1, r2) = δ(r1)
∑

h0
f h0
i j e−ih0r2 ) yield

Di (k) =
∑

h0

ε̂
h0
i j E j(k + h0); (26)

i.e., the dielectric permittivity no longer depends on k + 1
2 h0.

From (23) and (25), it is clear that the SD in a ‘discretely inhomogeneous’ crystalline
medium can be expressed in terms of a dependence of the dielectric permittivity upon the
specific combination of the light wavevector (the field SD) and the reciprocal lattice vectors
(the material SD). In the case of a weak SD, the expansion of the ε̂h

i j(k + 1
2 h, ϕ) functions in a

series of wavevector powers would immediately result in the relation between the coefficients
of the field and the material SD mentioned above (see formulae (14) and (A.7), as well as the
results [9, 10]). Furthermore, the wavevector dependence of the conductivity tensor derived in
section 13 in [2] within a simple microscopic model for non-modulated crystals may indeed
be expressed with a single argument 2k + h0, in accordance with our results3. The analysis of
the results derived with the microscopic approach [27] confirms that the same should be true
of the IC crystals.

Unlike in the present work, the microscopic dielectric Fourier components in chapter 2
of [2] appear (in our notation) as ε̂

h0
i j (k). This is caused by the expansion of a periodic response

function in the r′ variable but not in 1
2 (r + r′) (cf formula (22)). This result contradicts the

Onsager principle and disregards a possible material SD. On the other hand, the inconsistency
does not matter as long as we are dealing with macroscopically homogeneous crystals, because

3 The (quite equivalent) argument 2k + h in (24) is immediately obtained with α = 1/2 (see also appendix A).
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all the microscopic dielectric components with h0 �= 0 can be disregarded anyway and only
the ‘homogeneous’ components ε̂0

i j(k) remain. As a matter of fact, similar inaccuracies arise

in a large number of studies on the subject (e.g., ε̂i j(k, h0) in [28]; ε̂
h0
i j (k + h0) in [12]; see

also [3, 13]). The representation of the ε̂h
i j(k, k + h, ϕ) kind used in [15, 26, 29] seems to

be somewhat better. However, strictly speaking, such a double argument of the dielectric
permittivity also contradicts the Onsager principle. In order to meet the requirements of the
latter, the dielectric tensor has to be further expanded in a power series in just the ‘symmetrized’
combination k + (k + h) of the two arguments. This point has been missed in [15, 26], though
it is strictly taken into account by formulae (23) and (24).

Let us touch upon the symmetry properties of the microscopic Fourier components of the
dielectric permittivity. On the basis of the obvious reformulation of (8) for the IC crystals
(εi j(r1, r2, ϕ) = ε j i(−r1, r2, ϕ)) and formulae (22), (24) and (B.4), one can write

ε̂h
i j(k + 1

2 h, ϕ) = ε̂h
j i(−k − 1

2 h, ϕ). (27)

Moreover, the relation

ε̂h
i j(k + 1

2 h, ϕ) = [ε̂−h
i j (−k − 1

2 h, ϕ)]∗ (28)

should be fulfilled for lossless crystals. We remark in this respect that a property analogous
to (27) is well known for the ‘homogeneous’ macroscopic dielectric component of the non-
modulated crystals (ε̂0

i j(k) = ε̂0
j i(−k)—see [2], chapter 1). Due to a link between the Onsager

symmetry and the action of the time inversion operator T̂, the authors of [2] have treated
this property as a result of the behaviour T̂k = −k, which becomes more evident after the
identification h̄k = p = −ih̄∇. However, the latter assumption has been objected to [30]
as being invalid in general. The authors of [30] have stressed that the symmetry of the k-
dependent part of the dielectric tensor would be better understood as a direct consequence of
relation (7).4 The analysis of the property (27) now provides some extra reasons for accepting
this point of view, since the symmetry (27) is by no means associated with the evident relation
T̂h = h.

4.2. The mesoscopic constitutive relation for the incommensurate phases

Proceeding to the macroscopic properties of ordinary, non-modulated crystals, a common
‘macroscopic approximation’ is adopted, wherein all the dielectric components ε̂h

i j(k + 1
2 h, ϕ)

characterized by h �= 0 are in fact neglected (see, e.g., [2, 29]). However, the latter approach
becomes inadmissably rough if we wish to describe observable optical properties of the crystals
possessing IC phases [13–15]. Owing to incommensurateness of the modulation, ‘ultralong-
wavelength tunes’ are present in their structure, which greatly exceeds the typical interatomic
distances (see, e.g., the discussion by Meekes and Janner [12] for the IC phases that occur in the
insulators of the A2BX4 group). With the aid of the four-dimensional notation [12], those spatial
periodicities are expressed in terms of reciprocal lattice vectors hI = (0; 0; n3; m) having the
n3/m ratio close to −γ . They might be not too much smaller than the light wavelength or even
of the same magnitude. That is why it would be natural to adopt the so-called ‘mesoscopic’
approximation (see [13, 14, 26, 31, 32]), which accounts for the contributions to the optical
response of the IC crystal originating from the periodicities ∼2π/hI . As a result, the crystals
in the IC phases may be regarded as being spatially inhomogeneous on the mesoscopic scale.

In the case of a plane-wave modulation region in the A2BX4 family materials, the
vectors ±q = ±sδa∗

3 with the lowest microscopic indices n3 and m (the relevant four-
dimensional components being (0; 0; ∓r; ±s)) represent the most important representatives

4 However, it was mistakenly supposed in [30] that E(1), D(1) and E(2), D(2) relate to the points r and r′ , respectively.
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of hI . The estimations give k/q ∼ 2 × 10−2 to 10−1. It has been shown in [14] that the
long-wavelength modulation with the wavevector q essentially affects a number of physical
properties of the A2BX4 crystals, thus justifying keeping the contributions from q while
passing to the macroscopic parameters. Such an approach also agrees with the microscopic
models which predict that the Fourier components ε̂h

i j decrease rapidly with increasing n3

or m (see [2], chapter 4, and the proof for the IC systems [27, 33]). Hence, we shall not
discuss the known [13, 15] procedure of macroscopic averaging of equation (23) but write
down straightaway the mesoscopic CR for the case of a single long-wavelength periodicity
(λm = 2π/q) dominating in the structure of the IC phase:

Di (k, ϕ) = εi j E j (k) +
∑
±q

ε̂
q
i j(k + 1

2 q, ϕ)E j(k + q, ϕ) (29)

where we have taken into account that the ‘homogeneous’ contributions to the first-order SD
are forbidden by the inversion symmetry of A2BX4 crystals [12] (ε̂0

i j(k) ≈ εi j).
Following Golovko and Levanyuk [31], some authors believe (see, e.g., [13, 34, 35])

that the non-locality radius as in the IC crystals may be as large as the long-wavelength
superstructure period λm (λm = 2π/q in the simplest case) and so the SD should be
characterized by the ratio λm/λ. Under such circumstances, the effect would have been huge,
while the very representation of the ε̂

q
i j(k + 1

2 q, ϕ) function by several lowest-order terms of
the series in the wavevectors is too rough. In our opinion, this questionable idea is due to
identification of the non-locality scale as with the typical inhomogeneity scale, which does
approach λm. Its origin is easily understood, since the said scales in fact coincide in the non-
modulated crystals (as � a—see, e.g., the remarks at the end of section 4.1 in [2]). However,
the superstructure potential in the IC crystals is very weak with respect to the interatomic
potential [24], and it is difficult to justify the assertion that the response to the electromagnetic
wave should be correlated through distances of the order of λm 
 as. While doubting the
possibility for the huge field SD in the IC crystals, we emphasize the dominant role of the
material SD, since λm < λ (see the quantitative evaluations [12, 13] and formula (18)).

As a result, we may expand the Fourier component ε̂
q
i j in a series and confine ourselves

to considering the first-order SD only:

ε̂
q
i j(k + 1

2 q, ϕ) = ε
q
i j(ϕ) + iγ q

i jl(ϕ)(kl + 1
2 ql) + · · · , (30)

where the superscript ‘(1)’ of γi jl is dropped hereafter as unnecessary. The inverse Fourier
transformation of (30) gives rise to a partial case of equation (14), the mesoscopic CR for the
IC phases written in the coordinate space:

Di (r, ϕ) = {εi j + εi j(ϕ + qr) + 1
2 [∇lγi jl(ϕ + qr)]}E j(r, ϕ) + γi jl(ϕ + qr)∇l E j(r, ϕ) (31)

where the εi j are spatially independent components, and εi j(ϕ + qr) and γi jl(ϕ + qr) periodic
functions of the argument ϕ + qr. It is worth noticing that formulae (30) and (31) agree well
with the results [27] obtained in the framework of a microscopic theory. We shall use this CR
for the approximate description of crystal optics of centrosymmetric IC phases in the plane-
wave modulation region. Let us also stress that the criterion (18), which means the condition
λm 
 λ, certainly does not hold, and the neglect of the material SD (see the approximate
relation (17)) cannot be justified even as a rough approximation. Indeed, the third term in the
rhs of (31) (∼qas E0) for fields of the type E = E0 exp i[ωt + (k ± q)z] is at least not smaller
than the last one (∼(k ± q)as E0). At the same time, the spatially modulated components
εi j(ϕ + qr) and γi jl(ϕ + qr) proportional to a small amplitude of the modulation wave are
conspicuously less than εi j and so contribute little to the refractive indices. That is why the
geometric optics approximation (see formula (19)) certainly holds true; it is also quite clear
from the numerous experiments. Thus, the IC crystals represent a first example of media in
which material SD arises due to bulk effects and can in no case be ignored.
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5. Character of light waves in crystals with incommensurate phases

We now study the influence of both the field and material SD on the light eigenwaves propagated
in crystals with IC modulation. Let us consider the simplest case of light propagation along
the modulation axis z in the A2BX4 family and neglect the modulation-induced contributions
to the diagonal dielectric permittivity components (εii(ϕ +qr) � εii ). According to symmetry
considerations [12], the parameters εi j(ϕ + qr) and γi jl(ϕ + qr) should be, respectively, even
and odd functions of the coordinates, and

ε12(ϕ + qr) = εa cos(ϕ + qz),

g33(ϕ + qr) = ga sin(ϕ + qz),
(32)

where the gyration pseudotensor gml [20] is defined by the relation (ω/c)γi jl = ei jmgml , ei jm

stands for the unit antisymmetric pseudotensor of rank three and εa, ga the corresponding
amplitudes.

5.1. Normal waves and effective crystal optical parameters

Solving the ‘wave equation’ ∇2
z E + (ω2/c2)D = 0 in the approximation linear in εa, ga

and using the condition of weak anisotropy in the crystal (ga, εa,
√

ε22 − √
ε11 � n, where

n = √
ε = (ε11ε22)

1/4 denotes the mean refractive index), one can obtain the expressions for
the normal light waves in the medium:

E1(z, ϕ) =
{

ex +
ey

2

[
εa − ga(

√
ε11 + c

2ω
q)

(
√

ε11 + c
ω

q)2 − ε22
ei(ϕ+qz) +

εa + ga(
√

ε11 − c
2ω

q)

(
√

ε11 − c
ω

q)2 − ε22
e−i(ϕ+qz)

]}
eik1 z,

E2(z, ϕ) =
{

ex

2

[
εa + ga(

√
ε22 + c

2ω
q)

(
√

ε22 + c
ω

q)2 − ε11
ei(ϕ+qz) +

εa − ga(
√

ε22 − c
2ω

q)

(
√

ε22 − c
ω

q)2 − ε11
e−i(ϕ+qz)

]
+ ey

}
eik1 z .

(33)

Since the perturbations of the wavevectors ki and the resulting circular birefringence turn
out to be quadratic in the modulation amplitudes, we may restrict ourselves to the zeroth
approximation in what follows (ki = (ω/c)

√
εii ). Note that (33) agree with the results

published previously [23, 26] and take into consideration the extra terms related to the material
SD (∼(c/2ω)gaq).

It is useful to compare the predictions of (33) for a number of important limiting cases,
conventionally regarding the q value to be arbitrary. In macroscopically homogeneous
(λm → ∞) or ‘slowly’ (λm 
 λ0, with λ0 being the light wavelength in vacuum) modulated
crystals, the off-diagonal component ε12 of the dielectric tensor gives rise to rotation of the
principal axes of the optical ellipsoid with respect to the orthorhombic x and y axes. In the
case of the ‘rapid’ modulation (λm < λ0) inherent to the IC phases, ε12 makes the normal
waves non-orthogonal (E1E∗

2 ∝ εa(λm/λ0)
2) and their ellipticity non-zero. The latter in fact

means an apparent gyration effect. The field and the material SD lead to gyrotropy, too, while
their contributions to the non-orthogonality of the normal waves cancel out under the condition
λm � λ0/�n (with �n = √

ε22 − √
ε11 being the ordinary, or linear, birefringence), which is

certainly satisfied for the IC phases.
This represents a rather different situation, when compared with the non-modulated

crystals (cf the conclusions in [2, 23]). Thus, some crystal optical effects appear in
mesoscopically inhomogeneous media, which do not have analogues in macroscopically
homogeneous crystals and so are outside the corresponding classification schemes [22]. Non-
uniformity of the normal waves and a spatial dependence of their polarization state represent
another difficulty in solving the ‘inverse problem’ of crystal optics—identification of the effects
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on the basis of the known normal wave polarization. According to the approach of [14, 22],
the difficulty might be avoided by passing from (33) to the analysis of ‘effective normal
waves’, whose polarization does not formally depend upon the spatial coordinates but is
instead determined by the phase values ϕ + qz at the boundary surfaces of a given crystal
plate. Under certain circumstances, the approach may provide sample-independent results
or, at least, results that are not too sensitive to the sample thickness, which are believed to
be the most reasonable (see section 5.2). For the light propagation directions far from the
isotropic optical axes (ga, εa � �n, in accordance with the experimental geometry used
within the polarimetric technique HAUP—see [36]), one can obtain the following expressions
for the ellipticities (χ) and the azimuths (θ ) of the two effective normal waves polarized in the
vicinities of the x and y axes (see also [14, 22]):

χx = α+
x (cos ϕ1 − cos ϕ0) cot(�/2) + α−

x (sin ϕ1 + sin ϕ0),

θx = −α−
x (sin ϕ1 − sin ϕ0) cot(�/2) + α+

x (cos ϕ1 + cos ϕ0),
(34)

χy = α+
y (cos ϕ1 − cos ϕ0) cot(�/2) + α−

y (sin ϕ1 + sin ϕ0),

θy = α−
y (sin ϕ1 − sin ϕ0) cot(�/2) − α+

y (cos ϕ1 + cos ϕ0),
(35)

where ϕ0 = ϕ, ϕ1 = ϕ +qd (with d being the crystal thickness), � = (k2 −k1)d = (ω/c)d�n
denotes the phase retardation due to the linear birefringence and α±

x , α±
y are determined by

the amplitudes A±
1y and A±

2x , which appear as the coefficients of the terms exp[±i(ϕ + qz)] in
formulae (33):

α+
x = − 1

2 (A+
2x + A−

2x) α−
x = 1

2 (A+
2x − A−

2x),

α+
y = − 1

2 (A+
1y + A−

1y) α−
y = − 1

2 (A+
1y − A−

1y).
(36)

The parameters χ and θ would be naturally attributed, respectively, to the apparent gyration
and the optical indicatrix rotation effects.

Let us again make the value q in (33) and (36) arbitrary. Taking into account, step by step,
the smallness of the ratio λ0/λm and the optical anisotropy parameters (the values of ga�n,
εa�n etc) for the case of ‘slow’ spatial variations of the material properties, we get

α+
x = −α+

y = ga(λ0/λm) − εa�n

2n[�n2 − (λ0/λm)2]
,

α−
x = −α−

y = ga�n − εa(λ0/λm)

2n[�n2 − (λ0/λm)2]
.

(37)

This agrees with the expressions derived in [14] with the Jones calculus technique (in fact,
within the slowly varying amplitude approximation). From (34), (35) and (37), one can obtain
the result χy = −χx which is well known in the gyration theory for non-modulated crystals,
together with the equality θy = θx , which testifies that the θ parameter may indeed be treated
as the uniquely defined rotation angle for the principal axes of the optical indicatrix ellipsoid.

When we turn to the modulation in the IC phases, it looks also to be appropriate to
neglect the terms ∼ga�n, εa�n,5 the more so since the initial wave equation is valid under
the condition �n � n. Then formulae (33) and (36) yield

α+
x ≈ ga[n2(λm/λ0)

3 − (λm/4λ0)] − (εa/2)(λm/λ0)
2,

α−
x = −α−

y ≈ −εan(λm/λ0)
3,

α+
y ≈ ga[−n2(λm/λ0)

3 + (λm/4λ0)] − (εa/2)(λm/λ0)
2,

(38)

where the contributions to α−
x and α−

y from the SD prove to be cancelled out. In compliance
with the general reasoning of section 3.3 and 4.2, formulae (34), (35) and (38) predict that

5 For transparent, non-modulated crystals, this would be equivalent to the known approximation of orthogonal normal
waves (see, e.g., [2, 23]).
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the values of the modulation-imposed optical parameters related to the gradient terms in (31)
decrease with decreasing λm. A still more important consequence of these formulae is that
the terms linear in the small ratio λm/λ0, which originate from the material SD, can produce
eigenwave ellipticity (and so gyration) at least 1000 times greater than that associated with
the modulated ε12 component (∼(λm/λ0)

2) or the field SD (∼(λm/λ0)
3). Notice that only

two the latter mechanisms for the apparent gyration have in fact been considered in the earlier
studies on the subject. Furthermore, we now have χy �= −χx and θy �= θx , just owing to
the contributions ∼εa(λm/λ0)

2 mentioned above. Therefore, the electromagnetic waves in the
IC medium are not orthogonal because of both the different absolute values of their effective
ellipticities and a literal non-orthogonality of the major axes of their polarization ellipses. This
points once more to specific features of the crystal optics of inhomogeneous insulators (cf also
the situation that arose in the absorbing modulated crystals [22]). By the way, the term ‘optical
indicatrix rotation’ for the parameter θ [14, 23] seems to be merely conventional, in view of
the latter facts.

5.2. Possibilities for detecting the material spatial dispersion effects experimentally

For more than a decade, there has been a lasting controversy concerning the possibility and the
magnitude of the gyration effect observed experimentally in the centrosymmetric IC phases
of the A2BX4 family crystals. We know that the number of relevant publications has reached
at least a hundred; in particular, see the references [12–14, 26, 29, 31, 32, 34, 35, 37–42]. In
view of the importance of the problem, we shall concentrate further on quantitative analysis
of (34) and (38). Let us, above all, pay attention to the boundary conditions for the modulation
phase ϕ + qz, for we would in practice have a zero value of the observed quantities χ and
θ whenever the phase values ϕ0 and ϕ1 at the sample boundaries were not definitely fixed,
irrespective of the value of the amplitude factors α± [14, 41]. These questions has been
discussed in the most detail in [14] (see also [13, 32, 41]). It has been assumed in [14] that
ϕ1 = ϕ0 + 2π N (N being an integer); i.e., an integer number of long-wavelength modulation
periods λm should fit into the crystal length along the modulation axis. In the framework of
such an assumption, one can easily arrive at a successful explanation for the hardly doubtful
experimental fact of the absence of gyration in the IC phases when the light propagates along
the optical axes [14]. The assumption that ϕ1 = ϕ0 + (2N + 1)π looks worse in this case,
although one can instead prescribe a maximum size for the gyration observed in the HAUP
experiments (χx ∼ ga(λm/λ0) whenever ϕ0 = 0 or π—see formulae (34) and (38)) and predict
θx = 0. The fact is that the latter correlates on the whole with the statistics of contradictory
experimental data. Irrespective of all the stated motivation concerned with the will to achieve
concordance of theoretical conclusions with the experimental data, the assumptions ϕ0 = 0
(or π) and ϕ1 = π (or 0) fundamentally agree best with the symmetry properties of the
modulated functions (εi j(r) = εi j(−r) and γi jl(r) = −γi jl(−r) [12]—see figure 1).

Hence, the gyration along the essentially anisotropic directions in the IC crystal would be
mainly determined by the material SD, provided that the phase factors in (34) are fixed at the
boundaries and equal to the latter values. Then we have

χx � ga(λm/2λ0) cot(�/2). (39)

It seems worth discussing the possibility of critical behaviour of χ and θ in (34), (35) and (39),
when the phase retardation of the crystal sample approaches � = 2π N� (with N� also being
an integer). In [14], where expressions of the type of (34) occur, it has been remarked that the
possibility looks rather artificial, being imposed by the preceding approximation ga, εa � �n
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Figure 1. A schematic representation of a crystal with one-dimensionally spatially modulated
gyration (see the text). The modulation phase values at the crystal boundaries are ϕ0 = 0 and
ϕ1 = π , δ represents the phase retardation per modulation half-period and the light propagates
along the z axis.

necessary for derivation of (34). That is, formulae (34), (35) and (39) under the given conditions
would reflect nothing but the well-known [4, 5, 20, 21] tendency to a sharp increase of the
normal wave ellipticity, when the propagation direction approaches the isotropic optical axes
(�n → 0). Moreover, this by no means implies an increase in the gyration effect, since the
waves become circularly polarized at �n = 0 even for infinitely small (though non-zero)
gyration parameters. Nevertheless, we find it appropriate to take much care with this problem,
as a peculiarity of the type of cot(�/2) in the optical parameters would evoke numerous
unlikely effects dependent on the thickness (� ∝ d) of the sample under test.

First of all, the divergences ∼a cot(�/2) in the temperature dependences of the
polarimetric quantities directly measured with the HAUP technique (a being the small
imperfection parameter of the optical equipment—see, e.g., [34, 41, 42]) have been really
observed at � → 2π N� for many crystals, and not only the modulated ones. However, no
similar property has been detected in the crystal optical parameters themselves, except for the
results of [43], which were later recognized by the authors themselves as erroneous [35, 39].
The exact calculation of the light eigenmode polarization parameters without any simplifying
approximations represents an enormously complex task even for the non-modulated crystals
(see, e.g., [2, 21]), and it is the more so for the IC crystals. Further on, we shall analyse the given
problem theoretically for the similar though much simpler case of a ‘slow’ modulation when
there exist the following favourable circumstances. First, in the case of a square waveform of
the modulation (i.e., a ‘discretely inhomogeneous’ medium) and in the approximation related
closely to the superposition principle in crystal optics [20, 21, 23], it is easy to derive the
exact analytical solutions for χ with no extra assumptions about the smallness of the ratio
ga/�n. Second, the given solutions are known to coincide almost quantitatively with those
characteristic for the sine modulation wave and obtained with the differential Jones matrix
calculus (see the analysis in [14]). After standard derivation [21, 32, 43] of the integral Jones
matrix for a crystal with a square-wave modulation of the gyration (figure 1), one can find the
ellipticity angles for the effective normal light waves:

tan χ�
x,y = φ cos(N + 1

2 )B

[
sin(N + 1

2 )B ±
√

sin2(N + 1
2 )B + φ2 cos2(N + 1

2 )B

]−1

(40)

where

φ = sin(δ/2) sin 2χa/ cos(B/2),

cos B = cos2(δ/2) − cos 4χa sin2(δ/2).
(41)
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In (40) and (41), 2N + 1 means the number of modulation half-periods that fit into the
crystal thickness, δ = (2πdm/λ0)

√
�n2 + (ga/n)2 the phase retardation per thickness

dm = λm/2 of a uniform layer corresponding to the modulation half-period (δ includes
in general the contributions of both the linear (�n) and the so-called circular [20] (ga/n)
birefringences), and the ellipticity angle χa for the normal waves in the layer is defined by
tan χa = (ga/n)[�n +

√
�n2 + (ga/n)2]−1.

Formulae (40) and (41) are valid for arbitrary ratios of �n and ga (i.e., arbitrary
propagation directions) and they predict no critical behaviour of χ�

x,y . Instead, it is seen
that sin(N + 1/2)B → 0 on approaching the directions of the optical axes only (�n → 0,
δ → (2πdm/λ0)ga/n, χa → ±π/4), when the effective normal light waves become
circularly polarized (χ�

x,y → ±π/4). Let us now utilize a standard method adopted for
the propagation directions far from the optical axes (the HAUP-type experimental geometry;
ga/�n � 1) and neglect the contributions of ga under the radical in the formulae for δ and χa

(δ � (2πdm/λ0)�n, (2N + 1)B � (2N + 1)δ � � and χa � ga/(2n�n)). Putting formally
λm � λ0, we may pass from (40) to the relation

χ�
x � (πga/n)(λm/2λ0) cot(�/2). (42)

The latter formula correlates with the corresponding result for the ‘slow’ sine modulation wave
obtained under the same conditions [14] (see also formulae (34) and (37)):

χS
x � (ga/n)(λm/λ0) cot(�/2). (43)

It is now readily understood that the limit �n → 0 (or, more generally, � → 2π N�) cannot be
taken correctly in the simplified formulae (42) and (43), because they are not applicable under
such conditions. Eventually, the same situation happens in the case of the non-modulated
crystals, for which the approximate relation χa � ga/(2n�n) is not applicable at �n → 0,
either. The ‘rapid’ sine modulation may impose different solutions for the coefficients α±,
while the relations (34) and (35) themselves should remain unchanged. Unfortunately, we are
not in a position to get strictly the exact solutions for the ‘rapid’ sine modulation in the IC phases
and the case of arbitrary ratios ga/�n, owing to extreme analytical difficulties. However, we
already have many reasons to assume that the above conclusions about the ‘cot(�/2) problem’
should equally apply to (39).

Thus, the rough estimations of the apparent gyration in the IC phases may be performed
while putting cot(�/2) ∼ 1 in (39). Taking the modulation amplitude ga as large as the order
of magnitude for the gyration components in acentric crystals or somewhat smaller (ga ∼ 10−6

to 10−4, and a similar statement being true of εa), we obtain χ ∼ 10−8 to 5 × 10−6 rad. The
value of the ellipticity χ according to the upper limit corresponds to the sensitivity of the
HAUP apparatus (see [34, 36, 41, 42]) and might, in principle, be detected experimentally.
The relevant value of the effective gyration pseudotensor component (G33 � 2χn�n [20])
equals G33 ∼ 3 × 10−11 to 10−7 under the reasonable conditions λm/λ0 ∼ 0.02–0.1, n ∼ 1, 5
and �n ∼ 10−3–10−2. It appears to be 10–104 times smaller than the typical gyration in the
non-modulated, acentric crystals. If the boundary conditions ϕ1 = ϕ0 + 2π N and ϕ0 = ±π/2
mentioned above hold true, formulae (34) and (38) predict that the apparent gyration is mainly
determined by the modulated ε12(z) component rather than the material SD. Under the same
conditions, we would have gyration values hardly accessible with the present-day experimental
techniques (χ ∼ 4 × 10−10 to 3 × 10−7 rad and G33 ∼ 10−12 to 10−8).

In conclusion, consideration of mesoscopic inhomogeneity of the A2BX4 group of crystals
and the material SD may suggest a real mechanism for the apparent gyration effect in the
IC phases characterized by inversion symmetry and, therefore, the findings of the present
work may have a real impact on solving this long-standing problem. Despite very serious
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discrepancies in the corresponding experimental data, the most recent studies point mainly to
a small size of the effect, in agreement with our results.

Notice also that the model [37] ascribes both the optical activity and the violation of
the Cauchy relations (see [37, 44]) in the A2BX4 family to the presence of non-zero torques,
i.e. the lack of mechanical equilibrium. In this respect, subsequent electromagnetic analysis
of a non-stationary incommensurately modulated medium (see section 3.3) would be useful.

6. Conclusions

In this paper, we have provided both an analytical description and a physical interpretation of
the SD in microscopically and macroscopically inhomogeneous insulating media. It should
be remarked that our calculations have been rather formal and involved a number of points
(truncation of the series in (14) and (30), multiplying the series in (A.1), interchanging the
orders of differentiation and integration in (A.7) and the same for summation and integration
in (B.2)) which are allowable under the conditions of specific types of convergence for the
said series. Although it would be, in principle, instructive to have a thorough mathematical
proof for these, the possibility of considering the lowest-order SD as a self-dependent entity
is usually justified (see [2]) for more physical than purely mathematical reasons. The relevant
circumstances are provided by the relative weakness of the effect.

In the case of a weak SD, we have substantiated the quasi-local constitutive relation,
starting from the general non-local integral relation and the Onsager symmetry principle, and
isolated the effects termed the field SD and the material SD. As opposed to homogeneous
media, an inhomogeneous, spatially dispersive medium would respond non-locally even to a
spatially uniform external field.

The new gradient terms can lead to the optical gyration effect associated with finiteness
of the non-locality dimension as with respect to the typical scales of non-uniformity λm of the
medium. We have proven that, for the case of crystalline media, the SD should be correctly
described in terms of the Fourier components of an optical frequency dielectric permittivity
dependent upon a single wavevector argument, the specific combination k + 1

2 h of the light
wavevector and the generalized reciprocal lattice vectors. It is worth noting that, as far as
the first-order SD is concerned, the above results, derived in a purely phenomenological way,
agree with the microscopic theory [27] for the incommensurately modulated insulators, which
predicts dipole–magnetodipole and dipole–quadrupole contributions to the dielectric tensor,
linearly related to the mesoscopic modulation wavevector q.

We have pointed out a first example of materials, the IC crystals of the A2BX4 family,
whose bulk physical properties (namely, the mesoscopic periodicity with typical scales
λm ∼ (20−100)a) make the material SD important. Though our analysis hardly supports
the common views regarding the possibility of a very strong field SD in the IC crystals,
the calculations for the crystal optical parameters have demonstrated that the effective normal
electromagnetic waves, suitable for testing experimentally, turn out to be elliptically polarized.
This means that the (relatively small in size) gyration effect observed earlier in the A2BX4

family could be attributed to the material SD. Notice that the conclusion about a weakness of
the effect does not have a general character, being rather associated with the specific structure
and symmetry of the above crystals.

Finally, let us emphasize that the results of the present paper are certainly not limited to
insulating condensed matter systems with two IC periodicities and should also be applicable
for other inhomogeneous materials, including solid and liquid crystals under the influence of
non-uniform external fields or intense electromagnetic waves, and plasmas.
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Appendix A

According to (1), (11) and (12), the electric displacement function may be represented as

Di (r) =
∫

[εi j(r1, r) + 1
2 [∇lεi j (r1, r)](r′ − r)l

+
1

2!22
[∇l∇mεi j (r1, r)](r′ − r)l(r′ − r)m + · · ·][E j(r) + [∇l E j (r)](r′ − r)l

+
1

2!
[∇l∇m E j(r)](r′ − r)l(r′ − r)m + · · ·] dr′ (A.1)

where the action of the ∇ operator is limited by the nearest brackets. Here the expansion
of the field E j(r′) refers to the point r′ = r, while the kernel εi j(r1, r2) is expanded in the
r2 argument at the point b = r, so r2 − b = (1/2)(r′ − r), while the derivatives mean
∇rl εi j (r1, r) ≡ ∇r2l εi j (r1, r2)|r2=r and so do not refer to the r variable in the argument r1.6

Dropping the coordinate indices and the arguments of the field and the response function,
which are inessential in the following calculations, let us rewrite formula (A.1) in the form

D =
∫ [

ε +
1

2
(∇ε)(r ′ − r) + · · · +

1

n!2n
(∇nε)(r ′ − r)n + · · ·

]

×
[

E + (∇E)(r ′ − r) + · · · +
1

n!
(∇n E)(r ′ − r)n + · · ·

]
dr ′. (A.2)

After multiplying the series in (A.2) and arranging the terms in the resultant series according
to increasing power of the r ′ − r parameter, we obtain

D =
∫ ∞∑

n=0

[
ε(r ′ − r)n∇n E

n!
+

n∑
k=1

(∇kε)(r ′ − r)n∇n−k E

k!(n − k)!2k

]
dr ′. (A.3)

Our task is to find the coefficients in an expansion analogous to that of formula (5) for the
inhomogeneous medium. Besides the spatial derivatives of the field, it would also contain
derivatives of the tensors defined similarly to (6), as well as ‘mixed’ derivatives. That is why
our further transformations of (A.3) reduce to separating all possible derivatives ∇q[ε(r ′−r)p],
where q � p. For a standard expression of the rhs of (A.3) one has

(∇kε)(r ′ − r)n = ∇k[ε(r ′ − r)n] + n
k∑

j=1

∇k− j [(∇ j−1ε)(r ′ − r)n−1]. (A.4)

Each term in the sum (A.4) may be reduced to the form

∇k− j [(∇ j−1ε)(r ′ − r)n−1] =
j−1∑
i=0

( j − 1)!(n − 1)!

i !( j − i − 1)!(n − i − 1)!
∇k−i−1[ε(r ′ − r)n−i−1]. (A.5)

6 This becomes evident if one recalls that the r derivative of the tensor εi j , defined according to (6), is zero as long
as the kernel depends on r through r1 only.
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With (A.4) and (A.5), let us present formula (A.3) as

D =
∫ ∞∑

n=0

{
ε(r ′ − r)n∇n E

n!
+

n∑
k=1

[∇k[ε(r ′ − r)n]∇n−k E

k!(n − k)!2k

+
k∑

j=1

( j−1∑
i=0

( j − 1)!n!

i !( j − i − 1)!(n − i − 1)!

∇k−i−1[ε(r ′ − r)n−i−1]∇n−k E

k!(n − k)!2k

)]}
dr ′.

(A.6)

For the fixed summation index n (i.e., in the n th approximation), a numerical coefficient for
the term describing the ‘zero-order SD’ εE can be determined by putting in (A.6) k = n,
j = n and i = n − 1. In the same way, the coefficient of the contribution to the first-order SD
ε(r ′ − r)∇E is determined by the conditions k = n − 1, j = n − 1, i = n − 2 in (A.6) etc.
Therefore, the total coefficients of the contributions of all the approximations to the p th-order
SD of the form ε(r ′−r)p∇ p E (p � n) would equal

∑∞
n=p

n!
(n−p)!(p!)22n−p . Hence, the following

coefficients are obtained for the lowest p:
∑∞

n=0 2−n = 2 for p = 0;
∑∞

n=1 n2−n+1 = 4 for
p = 1; and

∑∞
n=2 n(n − 1)2−n = 4 for p = 2.

As a result, the expansion (A.2) reduces to the final form

D =
∫ (

{2εE} + {4ε(r ′ − r)∇E + 2∇[ε(r ′ − r)]E}
+ {4ε(r ′ − r)2∇2 E + 4∇[ε(r ′ − r)2]∇E + ∇2[ε(r ′ − r)2]E} + · · ·
+

{ ∞∑
n=p

n![ε(r ′ − r)p]∇ p E

(n − p)!(p!)22n−p
+ · · · +

∞∑
n=p

n!∇ p[ε(r ′ − r)p]E

(n − p)!(p!)22n

}
+ · · ·

+

{
1

n!
ε(r ′ − r)n∇n E + · · · +

1

n!2n
∇n[ε(r ′ − r)n]E

}
+ · · ·

)
dr ′ (A.7)

where each curly brace combines the terms associated with the SD of a common order. The
numerical coefficients of the lowest (r ′ − r)-order terms of interest to us would approach
with increasing accuracy the values given by (A.7) as the approximation used became higher
(i.e., with increasing n). Retaining only the lowest-order SD terms in (A.7) in the limit
n → ∞, writing out the coordinate indices and the arguments of all the functions again, and
interchanging the orders of differentiation and integration, we arrive at formulae (14) and (15)
of this work.

We finally stress that the numerical coefficients 1/2n, which appear in the expansion (A.1)
and turn out to be crucial in the following discussion, have nothing to do with the particular
definition β = 1/2 used by us. In a general case of r2 = β(r +r′), the kernel is expanded at the
point b = 2βr and we nevertheless have ε(r1, r2) = ε(r1, 2βr)+ 1

2 [∇rε(r1, 2βr)]·(r′−r)+· · ·,
where the coordinate indices are dropped for conciseness. However, the handling of the values
β �= 1/2 involves some weak points. First, the kernel and the field in the rhs of (A.1) are
defined at different points (2βr and r, respectively). Second, for periodic crystalline media,
the periodicity expressed in terms of r2 gets altered, compared to the periodicity in terms of r
and r′ coordinates (εi j(r, r′) = εi j(r + a, r′ + a) and εi j(r1, r2) = εi j (r1, r2 + 2a) for β = 1—
see section 4.1). In this respect, the choice of the α constant in the definition r1 = α(r − r′)
is not so limited.

It is also worth noticing that the construction of an expansion such as (14), which violates
the assumption concerning the additional dependence of the response function on β(r + r′),
would have met with insurmountable difficulties. If, for example, the kernel εi j(r − r′, r′)
were used, then on the basis of εi j(r1, r′) = εi j(r1, r) + ∇l [εi j(r1, r)](r′ − r)l + · · ·, we
would obtain a relation of the type of (A.7), in which, however, the numerical coefficients
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of ε(r ′ − r)p∇ p E form the divergent series
∑∞

n=p n![(n − p)!(p!)2]−1. As a consequence,
the coefficients appearing in the definitions of the material tensors ε(r) and γ(i)(r) (see
formulae (15)) would have changed every time on raising the accuracy of the expansion
(increasing n), thus evidencing that the corresponding representation of the product of the
series for the kernel and the field (see (A.1) and (A.2)) in a form similar to formula (14) is
incorrect. Even if we did not care about the ‘divergence problems’ and confined ourselves to
a low-order (second-order, third-order etc) approximation for the εi j(r), γ

(1)

i jl (r) and γ
(2)

i jlm(r)
tensors, the corresponding ‘quasi-local’ CR would still not have met the requirements of the
Onsager principle (see section 3.2).

Appendix B

Standard Fourier transformation of (20) gives

Di (k, ϕ) =
∫

εi j(k, k′, ϕ)E j (k′, ϕ) dk′ (B.1)

where

εi j (k, k′, ϕ) = 1

(2π)3

∫ ∫
εi j (r1, r2, ϕ)ei(k′r′−kr) dr dr′. (B.2)

Substituting (22) into (B.2) and changing the integration variables, one gets

εi j (k, k′, ϕ) =
∑

h

ε̂h
i j(

1
2 (k + k′))δ(k′ − k − h)eimϕ (B.3)

where

ε̂h
i j(

1
2 (k + k′)) =

∫
f h
i j (r1)e

− i
2 (k+k′)r1 dr1. (B.4)

Then formula (23) of section 4.1 may be readily obtained from (B.1) and (B.3).
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